RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans
نویسندگان
چکیده
UNLABELLED In vivo transcriptional analyses of microbial pathogens are often hampered by low proportions of pathogen biomass in host organs, hindering the coverage of full pathogen transcriptome. We aimed to address the transcriptome profiles of Candida albicans, the most prevalent fungal pathogen in systemically infected immunocompromised patients, during systemic infection in different hosts. We developed a strategy for high-resolution quantitative analysis of the C. albicans transcriptome directly from early and late stages of systemic infection in two different host models, mouse and the insect Galleria mellonella. Our results show that transcriptome sequencing (RNA-seq) libraries were enriched for fungal transcripts up to 1,600-fold using biotinylated bait probes to capture C. albicans sequences. This enrichment biased the read counts of only ~3% of the genes, which can be identified and removed based on a priori criteria. This allowed an unprecedented resolution of C. albicans transcriptome in vivo, with detection of over 86% of its genes. The transcriptional response of the fungus was surprisingly similar during infection of the two hosts and at the two time points, although some host- and time point-specific genes could be identified. Genes that were highly induced during infection were involved, for instance, in stress response, adhesion, iron acquisition, and biofilm formation. Of the in vivo-regulated genes, 10% are still of unknown function, and their future study will be of great interest. The fungal RNA enrichment procedure used here will help a better characterization of the C. albicans response in infected hosts and may be applied to other microbial pathogens. IMPORTANCE Understanding the mechanisms utilized by pathogens to infect and cause disease in their hosts is crucial for rational drug development. Transcriptomic studies may help investigations of these mechanisms by determining which genes are expressed specifically during infection. This task has been difficult so far, since the proportion of microbial biomass in infected tissues is often extremely low, thus limiting the depth of sequencing and comprehensive transcriptome analysis. Here, we adapted a technology to capture and enrich C. albicans RNA, which was next used for deep RNA sequencing directly from infected tissues from two different host organisms. The high-resolution transcriptome revealed a large number of genes that were so far unknown to participate in infection, which will likely constitute a focus of study in the future. More importantly, this method may be adapted to perform transcript profiling of any other microbes during host infection or colonization.
منابع مشابه
Candida albicans triggers activation of distinct signaling pathways to establish a proinflammatory gene expression program in primary human endothelial cells.
Endothelial cells (EC) actively participate in the innate defense against microbial pathogens. Under unfavorable conditions, defense reactions can turn life threatening resulting in sepsis. We therefore studied the so far largely unknown EC reaction patterns to the fungal pathogen Candida albicans, which is a major cause of lethality in septic patients. Using oligonucleotide microarray analysis...
متن کاملDown-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans
Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...
متن کاملDual transcriptome of the immediate neutrophil and Candida albicans interplay
Background: Neutrophils are traditionally considered transcriptionally inactive. Compared to other immune cells, little is known about their transcriptional profile during interaction with pathogens. Methods: We analyzed the meta-transcriptome of the neutrophil-Candida albicans interplay and the transcriptome of C. albicans challenged with neutrophil extracellular traps (NETs) by RNA-Seq, consi...
متن کاملIn vivo and in vitro Pathogenesis and Virulence Factors of Candida albicans Strains Isolated from Cutaneous Candidiasis
Background: The Candida albicans is one of the most important global opportunistic pathogens, and the incidence of candidiasis has increased over the past few decades. Despite the established role of skin in defense against fungal invasion, little has been documented about the pathogenesis of Candida species when changing from normal flora to pathogens of vaginal and gastrointestinal epithelia....
متن کاملPost-Transcriptional Regulation of the Sef1 Transcription Factor Controls the Virulence of Candida albicans in Its Mammalian Host
The yeast Candida albicans transitions between distinct lifestyles as a normal component of the human gastrointestinal microbiome and the most common agent of disseminated fungal disease. We previously identified Sef1 as a novel Cys(6)Zn(2) DNA binding protein that plays an essential role in C. albicans virulence by activating the transcription of iron uptake genes in iron-poor environments suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015